Keyword Search Result

[Keyword] optical fiber(173hit)

81-100hit(173hit)

  • Direct Optical Injection Locking of a 100-GHz-Class Oscillator IC Using a Back-Illuminated InP/InGaAs HPT and Its Applications

    Hideki KAMITSUNA  Tsugumichi SHIBATA  Kenji KURISHIMA  Minoru IDA  

     
    INVITED PAPER-MWP Devices

      Vol:
    E86-C No:7
      Page(s):
    1290-1298

    This paper discusses direct optical injection locking of a millimeter-wave oscillator using an InP/InGaAs heterojunction phototransistor (HPT) and its applications. Previously reported optically injection-locked oscillators (OILOs) are reviewed first. In particular, the features of a direct OILO (DOILO), where synchronization can be achieved by illuminating the active oscillator device itself, are discussed in comparison with the indirect OILO. DOILOs with excellent characteristics require high-performance transistors having both a high maximum oscillation frequency and fast photoresponse. We have developed high-performance opto-microwave-compatible InP/InGaAs HPTs whose layer and fabrication process are fully compatible with ultrahigh-speed heterojunction bipolar transistors. The paper discusses the photocoupling structure, and it is shown that the back-illuminated structure with the aid of InP subcollector enables one to achieve a 100-GHz-class DOILO. The configuration and performance of the 100-GHz-class DOILO are then presented; in particular, injection locking from optical signals with a modulation or beat frequency of around the fundamental (96 GHz) or second harmonic (192 GHz) is successfully demonstrated. To our knowledge, 96 GHz is the highest optically injection-locked frequency and 192 GHz is the highest inputmodulation frequency reported for OILOs. The HPT oscillator IC promises compact, low-power-consumption remote local oscillators for 100-GHz-class wireless systems and 100-Gbit/s-class optoelectronic clock recovery circuits. In addition, when the HPT oscillator is used as a modulator, we can attain cost-effective millimeter-wave systems compatible with conventional optical fiber networks transmitting digitally modulated baseband signals.

  • Experimental Evaluation of Coherent Adaptive Antenna Array Diversity Receiver Employing Optical Fiber Interface in IF Stage

    Taisuke IHARA  Hidekazu TAOKA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1676-1688

    This paper investigates based on laboratory experiments the multiuser interference suppression effect of the coherent adaptive antenna array diversity (CAAAD) receiver employing an optical fiber feeder in the intermediate frequency (IF) stage, aiming at the practical use of adaptive antenna array beam forming techniques based on the W-CDMA air interface. We employed a configuration in which the optical fiber conversion, i.e., electrical-to-optical (E/O) conversion (vice versa (O/E)), is performed on a received signal amplified by an automatic gain control (AGC) amplifier in the IF stage, to abate the impact of the noise component generated by the E/O (O/E) converters. We first show by computer simulation the superiority of the optical fiber conversion in the IF stage to that in the radio frequency (RF) stage based on the achievable bit error rate (BER) performance. Furthermore, experimental results elucidate that the loss in the required transmit signal energy per bit-to-background noise power spectrum density ratio (Eb/N0) of the implemented CAAAD receiver at the average BER of 10-3 employing the optical fiber feeders in the IF stage compared to that with coaxial cables is within a mere 0.2 dB (six antennas, three users, two-path Rayleigh fading channel model, and the ratio of the target signal energy per bit-to-interference power spectrum density ratio (Eb/I0) of the desired user to that of the interfering users for fast transmission power control (TPC) is ΔEb/I0=-15 dB).

  • Capacity Analysis and the Merging of a WDM Ring Fiber-Radio Backbone Incorporating Wavelength Interleaving with a Sectorized Antenna Interface

    Christina LIM  Ampalavanapillai NIRMALATHAS  Dalma NOVAK  Rodney WATERHOUSE  

     
    PAPER-Photonics for Antenna Systems

      Vol:
    E86-C No:7
      Page(s):
    1184-1190

    We investigate the capacity limitations of a WDM ring fiber-radio backbone incorporating wavelength interleaving where each base station drives a sectorized antenna interface. We also investigate the issues related to the merging of such networks with standard WDM infrastructures. The investigations show that re-allocating the interleaved WDM channels to fit within a 100 GHz block enables the millimeter-wave (mm-wave) fiber-radio system with sectorized antenna interfaces to integrate easily with WDM systems. The performance of a variety of channel allocations for the merged fiber-radio network is examined and simulation studies of the transmission of multiple channels are carried out. The overall network capacity of the merged mm-wave fiber-radio network is improved with the proposed channel allocation schemes.

  • Air Blowing Optical Fiber Cable System for Aerial Application

    Hideyuki IWATA  Shigeru TOMITA  

     
    PAPER

      Vol:
    E86-C No:5
      Page(s):
    725-730

    The rapid spread of the Internet has led to the construction of broadband networks and the steady installation of optical fiber to the home. The air blowing cable system makes it possible to construct optical fiber networks efficiently and economically when the service demand is unpredictable. We have installed this system for intra-building applications. In this paper, we report ways of applying the air blowing system to aerial distribution using access networks. We showed that certain problems must be overcome before the system can be used for aerial applications. We describe these problems, which include those related to installation distance and environmental conditions and also the system components. In particular, the characteristics at high temperature were degraded because of a reduction in the flux. However, we were able to improve these characteristics by adopting the flexibility of the optical fiber unit.

  • Optical Fibers for High-Capacity WDM, Long-Haul Systems

    Lynn E. NELSON  

     
    INVITED PAPER

      Vol:
    E86-C No:5
      Page(s):
    693-698

    Advanced optical transmission fibers have enabled 40-Gb/s transmission over distances of up to 5200km with 100-km amplified spans. This paper will discuss a number of the enabling fiber properties including dispersion, dispersion slope, Raman gain efficiency, and polarization mode dispersion.

  • Extended Optical Fiber Line Testing System with L/U-Band Optical Coupler Employing 4-Port Circulators and Chirped Fiber Bragg Grating Filters for L-Band WDM Transmission

    Nazuki HONDA  Noriyuki ARAKI  Hisashi IZUMITA  Minoru NAKAMURA  

     
    PAPER

      Vol:
    E86-B No:5
      Page(s):
    1562-1566

    An optical fiber line testing system is essential for reducing maintenance costs and improving service reliability in optical access networks. NTT has already developed such a system called AURORA (AUtomatic optical fibeR opeRAtions support system). As we already use the 1310 and 1550nm wavelengths for communication, we use the 1650nm wavelength for maintenance testing in accordance with ITU-T recommendation L.41. Recently, a long wavelength band (L-band) that extends to 1625nm has begun to be used for WDM transmission. With a view to monitoring optical fiber cables transmitting L-band communication light, an attractive way of separating the U-band wavelength of the test lights from the L-band wavelength of the communication light is to use a chirped fiber Bragg grating (FBG) filter because of its steep optical spectrum. However, it is difficult to measure fiber characteristics with an optical time-domain reflectometer (OTDR), because multi-reflections appear in the OTDR trace when FBG filters are installed at both ends of an optical fiber line. In this paper, we consider this problem and show that the reflection loss at the port of a test access module (TAM) must be more than 36.6dB. We also describe the system design for an extended optical fiber line testing system using an L/U-band optical coupler, which has two chirped FBGs between two 4-port circulators for L-band WDM transmission. In this system, the reflection loss at a TAM port was 38.1dB, and we confirmed that there was no degradation in the OTDR trace caused by multi-reflections at the optical filters.

  • A Study on Turbo Soft-Decision Decoding for Hard-Detected Optical Communication Signals

    Chen ZHENG  Takaya YAMAZATO  Hiraku OKADA  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E86-B No:3
      Page(s):
    1022-1030

    We propose a method to realize soft-decision decoding for hard-detected signals. In this paper, a novel concept is introduced as "error-detected reliability. " The method is very useful for optical fiber communications (OFC) as hard detection is the only detection method for the OFC systems. We demonstrate our proposed method using the turbo code in which soft information is required for decoding. As a result, the simulation shows slight difference in the range of moderate to high signal-to-noise ratio between the proposed decoding scheme and the conventional turbo decoding scheme. Moreover, the bit error rate of 10-11 can be achieved by serial concatenation of a Reed-Solomon code and a turbo code for Q-factor lower than 8.0 dB with a bandwidth expansion ratio of 33.3%.

  • Soft-Decision Decoding of Low-Density Parity-Check Codes for Hard-Detected Optical Communication Signals

    Chen ZHENG  Takaya YAMAZATO  Hiraku OKADA  Masaaki KATAYAMA  Akira OGAWA  

     
    LETTER-Fundamental Theories

      Vol:
    E86-B No:3
      Page(s):
    1132-1135

    A soft-decision decoding scheme of low-density parity-check codes (LDPC) is proposed for hard-detected signals of optical fiber communication (OFC) systems. Based on the error detection, the proposed scheme converts the received hard-decision into soft reliability for the input of the LDPC decoder, and soft-decision decoding is performed. Simulation results under OFC channels are shown and superior performance is obtained by using the proposed decoding scheme of the LDPC codes.

  • Analysis of Fiber Endface Shape and Processing Conditions for a Fiber Physical Contact Connector

    Yoshiteru ABE  Masaru KOBAYASHI  Shuichiro ASAKAWA  Ryo NAGASE  

     
    PAPER-Optoelectronics

      Vol:
    E86-C No:3
      Page(s):
    490-495

    We have developed a fiber physical contact (FPC) connector for the high-density connection of optical fibers. This connector individually aligns multiple bare fibers in micro-holes without ferrules and realizes physical contact by using the buckling force of the fibers themselves. The fiber endfaces must be tapered to allow the fibers to be inserted into the micro-holes. The endfaces must also be polished so that they realize physical contact (PC) with excellent optical performance. For each process, we examined the required shape and processing condition of the fiber endface for the FPC connector. As regards tapering, we determined the processing condition for achieving a target tapering angle and developed a non-breaking process with the optical fibers bent. In terms of polishing, we revealed that it is important for the fiber endface angle error to be less than 0.7 degrees if we are to achieve excellent optical performance. These results allowed us to fabricate an FPC connector that exhibited excellent levels of optical performance.

  • Full-Vector Analysis of Photonic Crystal Fibers Using the Finite Element Method

    Masanori KOSHIBA  

     
    INVITED PAPER

      Vol:
    E85-C No:4
      Page(s):
    881-888

    Using a full-vector finite element method (FEM) with curvilinear hybrid edge/nodal elements, a single-mode nature of index-guiding photonic crystal fibers, also called holey fibers (HFs), is accurately analyzed as a function of wavelength. The cladding effective index, which is very important design parameter for realizing a single-mode HF and is defined as the effective index of the infinite photonic crystal cladding if the core is absent, is also determined using the FEM. In traditional fiber theory, a normalized frequency, V, is often used to determine the number of guided modes in step-index fibers. In order to adapt the concept of V-parameter to HFs, the effective core radius, aeff, is determined using the actual numerical aperture given by the FEM. Furthermore, the group velocity dispersion of single-mode HFs is calculated as a function of their geometrical parameters, and the modal birefringence of HFs is numerically investigated.

  • Optical Fiber Cable Design for Economical Installation

    Hideyuki IWATA  Shigeru TOMITA  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    910-914

    In order to construct optical access networks economically for fiber to the home (FTTH), it is important to reduce the cost of optical fiber cable installation. Optical fiber and cable costs have been reduced over the past ten years, however there have been few reports describing installation cost reduction. In this paper, we describe the design of high-density optical fiber cable that reduces the required installation time. To achieve this we have reduced the optical fiber cable weight and the friction coefficient of the cable sheath. We reduced the cable weight by using polyethylene foam and a non-metallic tensile strength member made of a new material, PBO. These two approaches reduce the cable weight by a total of about 30%. We also added a lubricant to the polyethylene sheath of this cable and this reduced the pulling force required for the additional cable by 30%-50%.

  • Development and Future Prospect of Optical Fiber Technologies

    Naoya UCHIDA  

     
    INVITED PAPER

      Vol:
    E85-C No:4
      Page(s):
    868-880

    This paper presents a historical review of fiber technologies from the 1970s till now, focused on design, transmission characteristics, and reliability assurance of silica optical fibers. Discussion is made by dividing the period into two phases; the first phase closing nearly at the end of the 1980s and the second one starting at the same time. As for the first phase, we present designs of graded-index multimode fiber and single-mode fiber, and development of dispersion shifted fiber. Mechanical reliability assurance and loss increase phenomena due to hydrogen are also described. Development of an optical fiber amplifier triggered the start of the second phase. Due to the introduction of WDM transmission systems as well as demand on high bit-rate transmission, fiber dispersion and nonlinearity have become indispensable factors to be taken into consideration for system design and performance evaluation. We discuss novel non-zero dispersion shifted fibers and dispersion compensating fibers, developed to meet the requirements for long distance and high bit-rate WDM transmission systems. Finally, discussions are made on the future research and development items, which are necessary to realize anticipating photonic networks.

  • Single High-Order Transverse Mode Surface Emitting Laser with Micromachined Surface Relief

    Satoshi SHINADA  Fumio KOYAMA  Nobuhiko NISHIYAMA  Masakazu ARAI  

     
    PAPER-Active Devices

      Vol:
    E85-C No:4
      Page(s):
    995-1000

    We demonstrate a single high-order transverse mode surface emitting laser (VCSEL) with narrow trenches formed on a top surface. The design and the fabrication of a single high-order mode 850 nm GaAs VCSEL with micromachined surface relief are presented. Stable single-mode operation with a side-mode suppression ratio of over 40 dB was obtained in an entire measured current range. We obtained the maximum single mode power of over 3.5 mW and a record low series resistance of below 50 Ω. In addition, a single-lobe far field pattern is demonstrated even under high-order transverse mode operation by loading phase-shift on the top surface. A coupling efficiency with optical fibers is dramatically improved.

  • Design Considerations for Inverse Dispersion Fiber

    Kazuhide NAKAJIMA  Masaharu OHASHI  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    896-902

    In this paper, we describe design considerations for inverse dispersion fiber (IDF) whose chromatic dispersion is designed to compensate for that of conventional 1.3 µm zero-dispersion single-mode fiber (SMF). We clarify the appropriate structural parameters for W-type, triple-clad-type and ring-type refractive index profiles to realize a hybrid transmission line composed of SMF and IDF taking into consideration the bending sensitivity and the available wavelength bandwidth that achieves an average chromatic dispersion of below 1 ps/nm/km in the 1.55 µm region. We also show that, when the launched power is less than 0 dBm/ch, a hybrid transmission line composed of SMF and IDF provides better 40 Gbps 8 ch dense wavelength division multiplexing (DWDM) transmission performance than a conventional dispersion compensation scheme with a dispersion compensating fiber (DCF) module.

  • Application of Brillouin Scattering-Based Distributed Optical Fiber Strain Sensor to Actual Concrete Piles

    Hiroshige OHNO  Hiroshi NARUSE  Toshio KURASHIMA  Atsushi NOBIKI  Yasuomi UCHIYAMA  Yuki KUSAKABE  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    945-951

    We applied a Brillouin-OTDR, which is a distributed optical fiber strain sensor, to two actual concrete piles. The piles were made for use as highway foundations by on-site-pouring at construction sites and underwent load testing to ensure that their characteristics satisfied the required levels. Compressive strain caused by the load exerted on the piles was measured to an accuracy of 0.01% and a spatial resolution of 1 m. This measurement was obtained by embedding a strain-sensing optical fiber in the piles during construction. The results showed that there was good agreement between the measured strain and both the theoretical values and the values obtained with a conventional strain gauge based on electric resistance. Furthermore, the obtained strain distribution reflected the effects of friction between the pile surface and the ground. These results demonstrate the effectiveness of the Brillouin-OTDR for this kind of testing and also as a means of obtaining detailed data on the strain in concrete piles.

  • Distributed Optical Fiber Strain Sensor for Detecting River Embankment Collapse

    Mitsuru KIHARA  Katsumi HIRAMATSU  Masaki SHIMA  Shigeru IKEDA  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    952-960

    We have developed a distributed optical fiber strain sensor for detecting the collapse of river embankments. The sensor uses a Brillouin optical time domain reflectometer (BOTDR) and consists of an optical fiber cable and pieces of nonwoven cloth. Pieces of cloth are fixed to the cable at 1.5-meter intervals and it is then embedded in a U-shaped configuration in a river embankment. The pieces of cloth are displaced when there is movement of the soil in which they are embedded. If one of two adjacent pieces of cloth remains stationary while the other moves, the optical fiber between the two pieces is stretched. The collapse of an embankment can be detected by using a BOTDR to monitor any such stretching in the 1.5-m lengths of fiber. The developed sensor operates at a sensitivity of 0.025%/kgf, which is equivalent to 0.067%/mm, and is thus capable of detecting soil movements of a few mm in river embankments. The sensor is also able to provide effective advance warning of the collapse of a river embankment resulting from water penetration. We subjected the sensor system to field tests that demonstrated the effectiveness of its construction and its long-term stability. The developed sensor system is an effective tool for use in river management systems of the very near future.

  • Reduction in Optical Fiber Maintenance Cost by Using Automatic Optical Fiber Operations Support System with Remote Fiber Selector

    Noriyuki ARAKI  Hisashi IZUMITA  Minoru NAKAMURA  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    915-920

    Low cost optical subscriber systems and effective operation are indispensable to the construction and maintenance of greatly expanded optical fiber networks. An optical fiber line monitoring system is essential for reducing maintenance costs and improving service reliability in optical access networks. To promote cost-effective optical fiber line operation, we propose an extended automatic optical fiber operations support system (AURORA) with a remotely installed fiber selector. We suggest a configuration for extended AURORA and design the dynamic range of the system. We confirmed that testing could be carried out on an extended optical network section of 10 km in length by using extended AURORA when the optical trunk line was less than 15 km. We also discuss the effect on the maintenance cost of optical fiber cables in access networks. We calculated the annual maintenance cost for periodic tests in actual operation areas, and confirmed that this cost could be reduced by 30% compared with that for a conventional system.

  • Non-contact Technique of Optical Fiber Coating Removal with Hot Air Stream

    Hyun-Soo PARK  Seihyoung LEE  Un-Chul PAEK  Youngjoo CHUNG  

     
    PAPER-Optical Fiber

      Vol:
    E85-B No:1
      Page(s):
    206-209

    We will discuss a novel non-contact removal technique of optical fiber coating in continuous and uninterrupted manner with hot air stream. We observed little degradation of the tensile strength of the optical fiber after removing the protective polymer coating and the mean breaking tensile strength of the stripped optical fiber using non-contact removal method was 5.1 GPa.

  • Basic Studies of Fiber-Optic MEMS for Telecommunication Using Three Dimensional Micromachining

    Kazuhiro HANE  Minoru SASAKI  JongHyeong SONG  Yohei TAGUCHI  Kosuke MIURA  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1785-1791

    Fiber-optic MEMS which is fabricated by combining direct photo-lithography of optical fiber and silicon micro-machining is proposed. Preliminary results of micro-machining of optical fiber and variable telecommunication devices are presented.

  • All-Optical Signal Processing Using Highly-Nonlinear Optical Fibers

    Shigeki WATANABE  Fumio FUTAMI  

     
    INVITED PAPER-Optical Systems and Technologies

      Vol:
    E84-C No:5
      Page(s):
    553-563

    The effectiveness and possible applications of all-optical signal processing using highly-nonlinear dispersion-shifted fibers (HNL-DSFs) are described. Transparent and simultaneous processings of multi-channels WDM signal are key features of optical fiber processors. Simultaneous wavelength conversion of 3210 Gb/s WDM signal by four-wave mixing, all-optical 3R regeneration of 220 Gb/s WDM signal using nonlinear loop mirrors, and simultaneous recovery of 2020 GHz WDM optical clocks by supercontinuum were successfully demonstrated using HNL-DSFs, and possible applications of ultra-fast and multi-channel processing in future photonic networks are discussed.

81-100hit(173hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.